
Random Sampling Techniques for Space E�cient Online Computation

of Order Statistics of Large Datasets

Gurmeet Singh Manku

IBM Almaden Research Center

manku@almaden.ibm.com

Sridhar Rajagopalan

IBM Almaden Research Center

sridhar@almaden.ibm.com

Bruce G. Lindsay

IBM Almaden Research Center

bruce@almaden.ibm.com

Abstract

In a recent paper [MRL98], we had described a general
framework for single pass approximate quantile �nding algo-
rithms. This framework included several known algorithms
as special cases. We had identi�ed a new algorithm, within
the framework, which had a signi�cantly smaller require-
ment for main memory than other known algorithms. In
this paper, we address two issues left open in our earlier
paper.
First, all known and space e�cient algorithms for ap-

proximate quantile �nding require advance knowledge of the
length of the input sequence. Many important database ap-
plications employing quantiles cannot provide this informa-
tion. In this paper, we present a novel non-uniform random
sampling scheme and an extension of our framework. To-
gether, they form the basis of a new algorithm which com-
putes approximate quantiles without knowing the input se-
quence length.
Second, if the desired quantile is an extreme value (e.g.,

within the top 1% of the elements), the space requirements
of currently known algorithms are overly pessimistic. We
provide a simple algorithm which estimates extreme values
using less space than required by the earlier more general
technique for computing all quantiles. Our principal
observation here is that random sampling is quanti�ably
better when estimating extreme values than is the case with
the median.

1 Introduction

This article continues our study [MRL98] of the
problem of computing quantiles of large sequences of
online or disk-resident datasets in a single pass while
using as little main memory as possible. We will denote
the length of the input sequence by N . For � 2 (0; 1],
the element in position d�Ne in the sorted sequence of
the input is said to be the �-quantile. The quantile

corresponding to � = 0:5 has a special name, the
median. For � 2 [0; 1], an element belonging to the input
sequence is said to be an �-approximate �-quantile if its
rank is between d(�� �)Ne and d(�+ �)Ne. Obviously,
we assume that � � � and � � (1� �).

1.1 Database Applications

Quantiles characterize distributions of real world data
sets and are less sensitive to outliers than the moments
(mean and variance). They can be used by business
intelligence applications to distill summary information
from huge data sets.

Quantiles are used by query optimizers to provide
selectivity estimates for simple predicates on table
values [SALP79]. Equi-depth histograms [PIHS96] are
simply i

p
-quantiles, for i 2 f1; 2; : : : ; p � 1g, computed

over column values of database tables for a suitable p.

Splitters are used in parallel database systems, such
as DB2 and Informix [Inf, DB2] for value range data
partitioning. They are also used in distributed sorting
to assign data elements to processors [DNS91].

Approximate quantiles can be substituted for exact
quantiles in all the applications just described. In
practice, it is acceptable if the di�erence in rank
between the true and the approximate quantile is
guaranteed to be less than 1% of the total number of
data elements.

Probabilistic guarantees on the correctness of the
output are also acceptable in practice as long as such
guarantees are very close to 100%. For example, a set
of splitters dividing a very large data set of size N into
100 approximately equal parts is acceptable if, with
probability at least 99:99%, the rank of each splitter is
guaranteed to be no more than 0:001N elements away
from that of the corresponding exact splitter.

Extreme quantiles are often of much interest in real
world datasets. Extreme values characterize outliers
and represent skew in the data. For instance, the

95thquantile in a quarterly sales table for all franchises
of a company is useful to compute.



1.2 Motivation for Unknown N

If one views quantile computation as an aggregation
operator in relational databases, the input might be
an intermediate table for whose size, at best, a
crude estimate from the query optimizer is available.
Approximate quantiles can also be used for maintaining
equi-depth histograms of a dynamically growing table.
Such a histogram should be accurate at all times
irrespective of the current size of the table.

1.3 Challenges to Meet

The e�ciency and the correctness of the algorithm
should be data independent. It should not be in
uenced
by the arrival distribution or the value distribution of
the input. It should not require a priori knowledge of
the size of the data set. The algorithm should pro-
vide explicit and tunable performance guarantees. Its
performance should degrade gracefully as the approxi-
mation guarantee desired is made tighter.
The algorithm should require only a single pass over

the data. Multiple passes over large data sets not
only degrade performance but also are incompatible
with most DBMS Group By implementations. The
main memory requirements of the algorithm should
be as small as possible. Main memory is of concern
when histograms over multiple columns of a table
are to be computed simultaneously. Group By

algorithms also compute multiple aggregation results
concurrently, further increasing the desirability of a
small and predictable memory footprint. The algorithm
should be simple to understand, parallelizable, and
should scale well on SMP and MPP con�gurations.

1.4 Our Contributions

In our previous article [MRL98], we developed a
general framework for identifying approximate quantiles
of large data sets in a single pass using little main
memory. All algorithms which �t in this framework,
including the one proposed in [MRL98] and other
previously known ones [ARS97, MP80, AS95], required
that N , the size of the input sequence, be known
in advance. In this article, we build upon our
previous work by augmenting our framework and
devising a novel non-uniform sampling technique. The
resulting algorithm solves the approximate quantile
�nding problem without requiring advance knowledge
of N . The new algorithm does not entail a signi�cant
main memory overhead when compared with algorithms
that know N .

We also propose a simple strategy which requires
signi�cantly less memory when � is tiny (or large)
and close to 0 (or 1). The algorithm makes use of
a simple computational fact: the extreme values of
random samples can be computed using less space than
medians, and an interesting statistical fact: the rank

distribution of an extreme value of a random sample is
more tightly clustered around its expected rank than is
the case with quantiles close to the median. This allows
us to improve upon space requirements for extreme
value computation signi�cantly.

1.5 Related Work and Connections

Absence of a priori knowledge ofN enforces an online
view of the problem. Essentially, the algorithm is
required to have available an estimate of the quantiles
for any pre�x of the input sequence. Clearly, it could
be employed as an online aggregation operator [Hel97],
thereby providing more controllable and user friendly
user interfaces.

Synopsis data structures, a term coined by Gibbons
and Matias [GM99, GM98], summarize the information
content of massive data sets. The synopsis has a
memory footprint substantially smaller than the base
data set. It is designed to support fast computation
of approximate answers to a limited set of queries.
One example of a synopsis data structure is a set of
approximate histograms over several combinations of
column values of a table.

Gibbons, Matias and Poosala [GMP97] propose
an algorithm for computing approximate quantiles
that satisfy a di�erent error metric. The algorithm
dynamically adjusts a set of bucket boundaries on the

y, possibly requiring more than one pass over the data
set. Chaudhuri, Motwani and Narsayya [CMN98] also
present an approximate quantile �nding algorithm that
employs block sampling. Their error metrics di�er from
ours and the algorithm can possibly require multiple
passes.

2 Antecedents

The theory literature has focused on discovering
bounds on the number of comparisons needed to �nd
exact quantiles of datasets. The celebrated paper by
Blum, Floyd, Pratt, Rivest and Tarjan [BFP+73] shows
that any quantile of a data set of size N can be
computed with at most 5:43N comparisons. The paper
also establishes a lower bound of 1:5N comparisons for
the problem. For an account of progress since then, see
the survey by Mike Paterson [Pat97].

Frances Yao [Yao74] showed that any deterministic
algorithm that computes an approximate quantile re-
quires 
(N) comparisons. Curiously, this lower bound
is easily beaten by employing randomization. The folk-
lore algorithm that outputs the median of a random
sample of size O(��2 log ��1) requires a number of com-
parisons that is independent of N . For a comprehensive
survey of this aspect of the literature, see the survey by
Paterson [Pat97].



2.1 Single Pass Algorithms

Quantile �nding algorithms that require only a single
pass over the data were �rst studied by Ira Pohl [Poh69]
who established that any deterministic algorithm that
computes the exact median of N elements in one pass
needs to store at least N=2 data elements. Munro and
Paterson [MP80] proved a general result that memory

to store �(N
1

p ) elements is necessary and su�cient to
compute the exact median of N elements in p passes.
When N is large, computation of exact quantiles in

a single pass is impractical due to the incredibly large
main memory requirement. This motivates a search for
algorithms that compute approximate quantiles. The
ideas in the paper by Munro and Paterson [MP80]
can be used to construct a single pass algorithm that
computes �-approximate quantiles of N elements in
O(��1 log2(�N)) space.

In our previous paper [MRL98], we presented a gen-
eral framework for computing approximate quantiles in
a single pass, that includes two previously known al-
gorithms, one by Munro and Paterson [MP80] and an-
other by Alsabti, Ranka and Singh [ARS97], as special
cases. We also described a third algorithm, also within
the framework, which signi�cantly improved upon the
main memory requirements with respect to the earlier
algorithms. Theoretically though, the space complexity
of that algorithm isO(��1 log2(�N)), the same as that of
Munro and Paterson's algorithm. We also presented a
very simple randomized algorithm that achieves further
reduction in space at the cost of probabilistic guarantees
on the correctness of the output. The randomized algo-
rithm requires only O(��1 log2(��1 log2 log ��1)) space,
where � is the probability that the algorithm fails to
produce a quantile within the promised approximation
guarantee. Note that the space complexity is indepen-
dent of N .
The principal drawback is that all the above algo-

rithms require that N be known in advance.

2.2 Unknown N Algorithms

A very simple sampling scheme called reservoir
sampling [Vit85] generates a sample of size s without
advance knowledge of N . Folklore analysis shows that
if the sample has size O(��2 log ��1), the �-quantile of
the sample is an �-approximate quantile of the input
dataset with probability at least 1 � �. The quadratic
dependence of s on ��1 makes the scheme impractical
for small values of � because the entire sample has to be
stored in main memory. In comparison, if N is known,
a random sampling algorithm we proposed in [MRL98]
requires only O(��1 log2(��1 log2 log ��1)) space. This
motivates the search for a more sophisticated sampling
technique which works without knowing N but requires
little space for small values of �. This paper presents
one such scheme.

The random sampling scheme we present is non-
uniform, i.e., the probability that an element of the
input is included in the sample is not the same for all
elements. Elements that are early in the sequence are
included with larger probability than those that arrive
later. This non-uniformity improves the space overhead
required by the reservoir methods to levels comparable
to the best known algorithms that know N . The
principal challenges are the algorithmic and analysis
issues associated with non-uniform sampling. We feel
that the methods used in this paper might generate
interest in employing more sophisticated sampling
methods for solving other problems.

Problem 1 Given �, � and �, design a single pass
algorithm that computes, with probability at least 1� �,
an �-approximate �-quantile of an input sequence using
as little main memory as possible, without knowing the
length of the sequence in advance.

2.3 Extreme values

When � � �, the smallest element in the input
sequence, denoted by Min, is an �-approximate �
quantile. Computing Min requires only O(1) space.
This motivates the following questions: IsMin a special
case? Do we require signi�cantly larger amounts of
memory when � is slightly larger than �, a situation
in which Min does not qualify? The expected rank of
theMin has nothing to do with �. Is there an estimator
whose expected rank is �N and which can be computed
using very little space and reliably?
We will answer both of these questions (see section 7)

by providing a sampling method and an estimator which
has an expected rank of �N and which works when
as long as � and � are both small and not necessarily
exactly the same.

Problem 2 Given � close to 0, � and �, design a single
pass algorithm that computes, with probability at least
1 � �, an �-approximate �-quantile of a data set of
arbitrary size using as little main memory as possible.

3 The Unknown N Algorithm

The algorithm is parameterized by three integers b,
k and h. It uses b bu�ers each of which can store k
elements. We will later compute values of b, k and h as
functions of � and �. Bu�ers are always labeled empty,
partial or full. Initially, all b bu�ers are labeled empty.
With each bu�er X , we also associate a positive integer
w(X), which denotes its weight. Various algorithms
can be composed from an interleaved sequence of three
operations on bu�ers: New, Collapse and Output.

3.1 New Operation

New takes as input an empty bu�er and an integer
r that represents the sampling rate. It is invoked only



if there is an empty bu�er and at least one outstanding
element in the input sequence. The operation simply
populates the bu�er by choosing a a single random
element from a block of r input elements each. It
repeats this operation over k successive blocks of r
elements each. Thus it consumes exactly rk input
elements, choosing k of them for populating the bu�er.
The New operation returns the bu�er after assigning
it weight r. Further, if the bu�er was not completely
�lled because there were less than rk elements left in
the input stream, the bu�er is marked partial. In the
normal course, the bu�er is marked full.

Notice that choosing r = 1 amounts to no sampling.
If r is larger then sampling is introduced. The larger r is
the sparser the sample. The algorithm will dynamically
change the value of r during execution leading to a
variable rate of sampling.

3.2 Collapse Operation

Collapse takes c � 2 full input bu�ers, denoted by
X1; X2; : : : ; Xc, and outputs a bu�er, Y , each of size k.
In the end, all but one input bu�er is marked empty.
The output Y is stored in the bu�er that is marked full.
Thus, Y is logically di�erent from X1; X2; : : : ; Xc but
physically occupies space corresponding to one of them.
The weight of the output bu�er w(Y ) is the sum

of weights of input bu�ers,
Pc

i=1 w(Xi). We now
describe the elements stored in Y . Consider making
w(Xi) copies of each element in Xi and sorting all the
input bu�ers together, taking into account the multiple
copies. The elements in Y are simply k equally spaced
elements in this (sorted) sequence. If w(Y ) is odd,

these k elements are in positions jw(Y ) + w(Y )+1
2 , for

j = 0; 1; : : : ; k � 1. If w(Y ) is even, we have two
choices: We could either choose elements in positions

jw(Y )+ w(Y )
2 or those in positions jw(Y )+ w(Y )+2

2 , for
j = 0; 1; : : : ; k � 1. The Collapse operator alternates
between these two choices on successive invocations
with even w(Y ).

It is easy to see that multiple copies of elements
need not actually be materialized. Collapse can be
performed in situ; no additional space is required. In
the end, only the bu�er that stores the output is labeled
full, the rest are labeled empty.

3.3 Output Operation

Output is performed exactly once, just before ter-
mination. It takes c � 2 input bu�ers, X1; X2; : : : ; Xc.
All bu�ers are full with the exception of the last one
which might be partial. Similar to Collapse, this
operator makes w(Xi) copies of each element in Xi

and sorts all the input bu�ers together, taking the
multiple copies into account. The element at position
d�(kw(X1) + kw(X2) + � � �+ kw(Xc�1) + kcw(Xc))e is
output, where kc denotes the size of the last bu�er.

3.4 De�nition of Weighted �-quantile

As shown in Figure 1, the algorithm can be looked
upon as being composed of two stages. The �rst stage
accepts the input sequence and invokes successive New
operations. The output of the �rst stage feeds the
second stage which runs the deterministic algorithm.
The assignment of weights to New bu�ers e�ectively
feeds a weighted sequence of elements to the second
stage where the weight of an element is the weight of
the New bu�er it lies in. The weighted �-quantile of
such a weighted sequence is de�ned in a natural way as
follows. Imagine taking all New bu�ers together and
making as many copies of each element as the weight of
the New bu�er it lies in. The �-quantile of this set of
copies is the weighted �-quantile of the sequence.

Random Sampling
Non-Uniform

Random Sample

Input Sequence

Deterministic
Quantile Finding Algorithm

Output

Weight w

Figure 1: The Big Picture.

3.5 A Tree Representation

An algorithm for computing approximate quantiles
consists of a series of invocations of New and Col-

lapse, terminating with Output. New populates
empty bu�ers with input. Collapse reclaims bu�er
space by collapsing a chosen subset of full bu�ers. Out-
put is invoked on the �nal set of bu�ers. The sequence
of operations carried out by such an algorithm can be
represented by a tree. The vertex set of the tree (except
the root) is the set of all the (logical) bu�ers (initial, in-
termediate or �nal) produced during the computation.
Clearly, there could be many more of these than b, the
number of physical bu�ers used by the algorithm. The
leaves of the tree correspond to initial bu�ers that get
populated from the incoming data stream. An edge is
drawn from each input bu�er to the output bu�er of a
Collapse operation. The root corresponds to the �nal
Output operation. The children of the root are the
�nal bu�ers produced. We draw broken edges from the
children to the root.

See Figure 2 depicting one such tree possible with
b = 5 bu�ers, where each New has been invoked with



1

5 4 3 2 1

10 6 3 1

35

15

4 3 2 1 3 2 1 2 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 111

Figure 2: A tree with b = 5 bu�ers when each
New is invoked with sampling rate r = 1. Each
node is labeled with its weight.

sampling rate 1. The labels of nodes represent their
weights. Leaves get populated left to right.

3.6 Collapse Policy

The algorithm manages b � 2 bu�ers each of size
k. With each full bu�er, we also associate an integer
value to denote its level in the tree. New bu�ers
are assigned level zero when the sampling rate r is
one. During the course of the algorithm, if there is
an outstanding element in the input sequence, we check
whether there are any empty bu�ers. If so, we invoke
New (the determination of sampling rate r will be
more fully explained in Section 3.7). If there are no
empty bu�ers, we have no choice but to reclaim space
by invoking Collapse on some bu�ers. The question
then is: Which subset of full bu�ers do we Collapse?
We now describe our choice.
New bu�ers are assigned level zero (until the onset of

sampling). Let ` be the smallest level of any full bu�er.
If there is exactly one bu�er at level `, we increment
its level until there are at least two at the lowest level.
Collapse is invoked on the set of bu�ers at level `.
The output of Collapse is assigned level ` + 1. See
Figure 2 for the tree formed with b = 5 bu�ers using
the bu�er management scheme just described.

3.7 Non-uniform Sampling

The height of the tree increases by one whenever
Collapse is invoked on the entire set of b bu�ers.
Creation of the �rst bu�er at level h marks the onset
of sampling. Thereafter, New is invoked with sampling
rate r = 2 and each New bu�er is assigned level 1. This
continues until the height of the tree increases further
to h + 1. At this point, the sampling rate is halved,
i.e., New is invoked with r = 4 and New bu�ers are
assigned level 2. In general, whenever the �rst bu�er
at height h+ i is produced for i � 0, the sampling rate
is halved and subsequent New operations are invoked
with rate r = 2i+1, the New bu�er being assigned level
i + 1. See Figure 3 for the tree formed by the bu�er
management policy just described.

Ls (Level 2)

L0 (level 0)

Ls (Level 3)

LH (Level H)

Ls (Level 1)

Figure 3: The tree for computing a weighted �-
quantile of samples.

Output is invoked whenever a current estimate
of the quantiles is desired or if the input stream
runs dry. Output does not destroy or modify the
state. Therefore, it can be invoked as many times as
required. It is this feature of our algorithm that makes it
amenable for online aggregation environments [Hel97].

4 Analysis of the Algorithm

There are two possible sources of error which our
algorithm is subject to. The �rst is the sampling error,
and the second is the error introduced by the algorithm.
Correspondingly, in our analysis, the permissible error
� is split into two parts: (1 � �)� and ��, for some
� 2 (0; 1). The �rst part is used to account for the
sampling error, and the second part is used to account
for the error introduced by the deterministic tree that
consumes the samples (See Figure 1). More precisely,
we will establish two bounds. First, in Section 4.1,
the sampling scheme will be shown to guarantee that
with probability at least 1 � �, both the weighted
(� � ��)-quantile and the weighted (� + ��)-quantile
of the sample set are �-approximate �-quantiles of
the input sequence seen so far. Second, in Section
4.2, the deterministic tree will be shown to guarantee
that with probability 1, it computes a weighted ��-
approximate �-quantile of the weighted sequence of
(sample) elements fed to it. The two guarantees taken
together ensure that the output is an �-approximate �-
quantile of the input sequence at all times but for an
event of probability at most 1 � � which accounts for
the failure of the sampling step.

Analysis of the sampling scheme and the determinis-
tic tree will yield inequalities linking together b; k; h; �; �
and �. Computing b, k and h as functions of � and �
will then be a matter of solving an optimization prob-
lem subject to a set of constraints we derive.



4.1 The Sampling Constraint

The non-uniformity of our sampling scheme is im-
plicit in the de�nition of New. Our analysis employs
an interesting variant of Hoe�ding's inequality [Hoe63].
We state the lemma here without proof and refer the
interested reader to Hoe�dings original article:

Lemma 1 (Hoe�ding's Inequality) Let X1; X2; : : : ; Xt

denote independent random variables satisfying 0 �
Xi � ni for i = 1; 2; : : : ; t. Let X =

Pt
i=1Xi. Let EX

denote the expected value of X. Then, for any � > 0,

Pr[jX �EX j � �] � exp �2�2P
t
i=1 n

2

i

:

Consider partitioning N , the size of the input
sequence, into t disjoint non-empty subsets of sizes
n1; n2; : : : ; nt in an arbitrary way. Thus N =

Pt
i=1 ni.

From within each subset, we choose one element (the
representative for this subset) uniformly randomly.
These t representatives constitute our sample. Each
element in the sample is assigned a weight that equals
the size of the subset it was drawn from. Therefore,
the cumulative weight of all elements in the sample is
N . Consider the weighted (� + ��)-quantile and the
weighted (�� ��)-quantile of the sample. Let � denote
the probability that the ranks of both of these elements
in the sorted sequence of the input sequence (of size N)
lies in the range d(�� �)Ne.

Lemma 2 � � 2 exp
h
�2(1� �)2�2

(
Pt

i=1
ni)

2

P
t
i=1 n

2

i

i

Proof: Let Small denote the set of input elements
whose rank is smaller than d(� � �)Ne in the sorted
input. Let Large denote the set of elements whose
rank is larger than d(� + �)Ne. Our sample is bad i�
either the weighted sum of sample elements drawn from
Small is more than d(�� ��)Ne or the weighted sum
of sample elements drawn from Large is more than
N � d(� + ��)Ne. We will bound the probability that
the �rst event occurs.
De�ne t Bernoulli variables, X1; X2; : : : ; Xt. The

random variable Xi takes the value ni if the repre-
sentative of the ith subset lies in Small; otherwise
it takes the value zero. Let X =

Pt
i=1Xi. It fol-

lows that EX = d(� � �)Ne � 1. The probability
that X assumes a value at least d(�� ��)Ne can be
bounded by invoking Hoe�ding's inequality as follows:

Pr[X �EX > (1� �)�N ] � exp
�2(1��)2�2(

P
t
i=1 ni)

2

P
t
i=1

n2
i

.

By a symmetric argument, one can show that the
same bound holds for the probability that weighted
sum of elements drawn from Large is more than
N � d(�+ ��)Ne. Taken together, we get the desired
result. 2

Let H denote the highest level of the tree. Let Ld
denote the number of leaves in the tree before sampling

starts, i.e., the number of New bu�ers with weight 1.
Let LH denote the number of leaves at level H . Let
Ls denote the number of leaves at any other level other
than 0 and H . See Figure 3.
Application of Lemma 2 to our sampling scheme

yields � � 2 exp
�
�2(1� �)2�2X

�
where X equals

[Ldk+2Lsk+22Lsk+���+2H�1Lsk+2HLHk]
2

20Ldk+22Lsk+24Lsk+���+22H�2Lsk+22HLHk
which simpli-

�es to k[Ld+(2H�2)Ls+2HLH ]2

Ld+
4H�4

3
Ls+4HLH

. It can be shown1 that

X takes its minimum value for some LH � 0. The
minimum value is X � 2H�1

4H

�
4Ld +

8
3 (2

H � 2)Ls
�
.

It follows that when H = 1, X = Ldk. As
H ! 1, X ! 8

3Lsk. We can also show that
X � min[Ldk;

8
3Lsk]. It follows that � � 2 exp[�2(1�

�)2�2min[Ldk;
8
3Lsk]] which is equivalent to

min
�
Ldk;

8
3Lsk

�
� log(2��1)

2(1��)2�2 (1)

Thus, we have proved the following lemma:

Lemma 3 For any dataset, �, �, �, and any choice of
0 < � < 1: if equation 1 is satis�ed, then both the
weighted �� ��-quantile and the �+ ��-quantile of the
sample are � approximate � quantiles of the dataset with
probability 1� �.

Notice that equation 1, places a restriction on k, the
size of each bu�er, and Ld and Ls parameters which are
determined by the shape of the collapse tree. We now
derive two other such conditions, each of which comes
from considering the errors that are introduced by the
computational process. Unlike the �rst condition, these
will depend on � and � only and not on �.

4.2 The Tree Constraints

Let C denote the total number of Collapse opera-
tions in the tree, i.e., the number of non-leaf non-root
nodes. Let W denote the sum of weights of all Col-
lapse operations. Let wmax denote the weight of the
heaviest child of the root. The main lemma in our ear-
lier paper, which applies mutatis mutandis to the new
sampling based algorithm is:

Lemma 4 The weighted di�erence in rank between
the true weighted �-quantile of the sequence fed to
the algorithm and that of the output produced by the
algorithm is at most W�C�1

2 + wmax. 2

For a proof of this lemma, we refer the interested
reader to our earlier paper [MRL98]. The following
lemma provides an upper bound for W , the sum of
weights of all Collapse operations.

1We minimize y = (a + x)2(b + x)�1, where a = 2�H [Ld +

(2H�2)Ls] and b = 4�H [Ld+
4
H
�4

3
Ls]. Setting y0 = (a+x)(2b�

a + x)(b + x)2 to zero yields x = a � 2b. The second derivative
y00 = 2(b � a)2(b + x)3 is positive at x = a � 2b. The minimum
value for y is 4(a � b).



Lemma 5 Let `1; `2; : : : ; `L denote the sequence of full
leaves in the tree from left to right. Let hi denote the
distance of `i from the �nal root. Let wi denote the
weight that was assigned to `i when it was created with
New. Then W �

PL
i=1 wi(hi � 1) 2

Note that the partial bu�er that might result when
the input sequence terminates, does not participate in
Lemma 5.
We �rst handle the case H � 1. In Figure 3, Ld and

LH denote the number of full leaves at level 0 and level
H respectively. Ls denotes the number of full leaves at
all other levels. The size of the partial bu�er is k0 where
0 � k0 < k.
Application of Lemma 5 yields W � Ld(h+H �1)+

2Ls(h+H � 2) + 22Ls(h +H � 3) + � � �+ 2H�1Lsh+
2H(h� 1)LH which simpli�es to

W � Ld(h+H � 1) + Ls[(h+ 1)2H � 2(h+H)]

+ LH(h� 1)2H

The weighted sum of elements in leaf bu�ers is

S = Ldk + 2Lsk + 22Lsk + � � �+ 2H�1
Lsk + 2HLHk + 2Hk0

= k[Ld + Ls(2
H
� 2) + LH2

H ] + 2Hk0

The analysis of the tree shown in Figure 3 is simpli�ed
if we weaken the upper bound in Lemma 4 to W

2 +wmax.
Then the tree computes a weighted ��-approximate
quantile of the sample S if the constraint W

2 +wmax �
��S is satis�ed.
Setting wmax equal to Ld + (2H � 2)Ls pessimisti-

cally, we obtain 1
2 [(Ld(h + H � 1) + Ls[(h + 1)2H �

2(h + H)] + LH(h � 1)2H ] + Ld + (2H � 2)Ls �
��k[Ld + (2H � 2)Ls + LH2

H ] + ��2Hk0 which can
be tightened by dropping the trailing term contain-
ing k0. The resulting inequality is equivalent to
Ld(h+H�1)+Ls[(h+1)2H�2(h+H)]+LH(h�1)2H

Ld+Ls(2H�2)+LH2H
� 2��k � 2.

Note that addition of LH2
H in the denominator on

the left hand side of the inequality is accompanied
by addition of (h � 1)LH2

H in the numerator. It is

true that a+(h�1)�
b+� � a

b
i� a

b
� h � 1 for any pos-

itive integers a; b;� and h. It can be veri�ed that
Ld(h+H�1)+Ls[(h+1)2H�2(h+H)]

Ld+Ls(2H�2) � (h � 1) for any value

of H . Thus, we can weaken the previous inequality to
Ld(h+H�1)+Ls[(h+1)2H�2(h+H)]

Ld+Ls(2H�2) � 2��k � 2.

Let � denote the ratio Ld
Ls
. It can be shown that

the left hand side is less than h + 1 + c, where c =

max
h
(��2)(H�2)
�+2H�2

i
H�1

. This yields

h+ 3 + c � 2��k (2)

The analysis is much simpler for the Munro-Paterson
Collapse policy [MP80] as � = 2.

We now handle the case H = 0, i.e., sampling has
not kicked in; all elements in the input sequence are fed
to the tree. Let L be the current number of full leaves,
where 0 < L � Ld. So far, Lk+ k0 input elements have
been processed by the tree, where k0 is the size of the
partial bu�er in the end. The height of the tree is at
most h. From Lemma 4, the di�erence in rank between
the output of the algorithm and the exact �-quantile of
the input sequence is at most W

2 +wmax. Using Lemma

5, we obtain L(h�1)
2 + wmax � �(Lk + k0). Using a

pessimistic value of wmax = L, we get L(h�1)
2 + L �

�(Lk + k0) which can be made tighter by dropping the
term containing k0. The resulting inequality simpli�es
to

h+ 1 � 2�k (3)

4.3 Putting it All Together

Equations 2 and 3 ensure that the deterministic tree
always computes a weighted ��-approximate �-quantile
of the sample fed to it. Equation 1 ensures that with
probability at least 1 � �, the output of this tree is
no more than another (1 � �)�N elements away from
the exact �-quantile of N elements for any value of
N . Taken together, the two constraints ensure that the
overall algorithm always computes an �-approximate �-
quantile with probability at least 1�� without knowing
the size of the input sequence in advance. Thus,
provided all the constraints speci�ed in equations 1,
2, and 3 are satis�ed, the output value will be an �
approximate � quantile with probability at least 1� �.

4.4 Space Complexity

The space complexity for the algorithm can be
computed by �xing � = 0:5 and using Munro-Paterson
Collapse policy, which is explained in detail in
[MRL98]. The number of leaves Ld = 2b and Ls = 2b�1.
Eqn 1 simpli�es to 2bk � 2��2 log(2��1). The height
h = b�1, � = 2 and c = 0 in Eqn 2, which simpli�es to
b + 2 � �k, which is tighter than Eqn 3. Solving these
two inequalities for b and k yields the space complexity.

Theorem 1 It is possible to compute, with probability
at least 1 � �, an �-approximate �-quantile of an arbi-
trarily large dataset in a single pass without requiring
a priori knowledge of its size, using O(��1 log2 ��1 +
��1 log2 log ��1) space. 2

Our random sampling scheme is easy to implement in
practice as it requires us to pick a single element from
a block of r elements where r is a power of two. Our
sampling is without replacement. Typically, algorithms
that employ random sampling require sampling without
replacement, which is not as easy to implement.



4.5 Computing b and k

Computation of b and k now reduces to an optimiza-
tion problem where we minimize bk, the amount of main
memory required, subject to three constraints, namely
Equations 1, 2 and 3. We also have the constraints
0 < � < 1, b > 0, k > 0 and h > 0.
If the tree is allowed to grow to height h � 3 before

sampling begins, the number of leaves Ld =
�
b+h�2
h�1

�

and Ls =
�
b+h�3
h�1

�
. These can be plugged in Eq 1.

Optimal values for b and k for values of � and � of
practical interest can be computed by searching for b
and h in the interval [2; 50]. For �xed values of b and h,
the three constraints imply a lower bound on k, which
can be computed as follows. Substituting values of b,
h, � and � in Eqn 1 yields an inequality of the form
k � c1(1��)

�2 where c1 is some constant. Eqn 2 yields
an inequality of the form k � c2�

�1 where c2 is another
constant. Solve the equation c1(1 � �)�2 = c2�

�1 for
�. Then min[

�
c2�

�1
�
; h+1

2� ] is a lower bound for k.
The latter term comes from Equation 3. Identify that
combination of b and h that minimizes the product bk.

4.6 Performance Comparison

Table 1 lists b, k and total memory required by the
new algorithm for practical values of � and �. The
memory requirements for our old algorithm that knows
N a priori [MRL98] are also listed along with. The
new algorithm requires no more than twice the memory
required by the old one. Figure 4 compares the memory
requirements as N varies. The new algorithm requires a
constant amount of space, no matter what the value of
N is. The old algorithm can take advantage of the fact
that sampling need not be carried out for small values
of N and save on memory requirements.

0

1000

2000

3000

4000

5000

6000

7000

8000

3 4 5 6 7 8 9

M
em

or
y

log (N) to base 10

Comparison of the Known N and Unknown N Algorithms

Known N
Unknown N

Figure 4: Comparison of memory requirements
for � = 0:01 and � = 10�4.

4.7 Multiple Quantiles

If a multitude of quantiles is desired simultaneously,
the algorithm remains the same as before. Its analysis,
however, requires a small change: � in Eqn 1 gets
replaced by p� where p is the number of quantiles being

computed simultaneously. The proof of correctness is
simple: Let �0 = �=p. The deterministic algorithm to
which samples are fed computes any number of weighted
quantiles of the samples simultaneously, each of which
is ��-approximate. Eqn 1 con�rms that the probability
that a particular quantile fails to be �-approximate is at
most �0. It follows that the probability that any quantile
fails to be �-approximate is at most p�0 which is simply
�.
From Theorem 1, we deduce that the dependence of

the total amount of memory required on the number
of quantiles p, is O(log2 log p). Therefore, the cost of
computing additional quantiles is small.
We can actually establish an upper bound on main

memory requirements, independent of p. The trick
lies in pre-computing a total of

�
��1

�
quantiles for

�0 = �
2 ;

3�
2 ;

5�
2 , and so on, each one of which is �

2 -
approximate. To output a �-quantile, simply select that
quantile from the pre-computed set that corresponds
to a position closest to �. It is easy to see that the
output is �-approximate. This pre-computation requires
O(��1 log2(��1 log(��)�1)) space. It is very useful when
� is not known in advance, as is the case when quantiles
are used for constructing equi-depth histograms.
In Table 2, we plot the memory requirements as the

number of quantiles increases, for di�erent values of
�, keeping � �xed at 10�4. The last column lists the
upper bound on memory requirements for an arbitrary
number of quantiles.

�; p 1 4 16 64 1

0.100 0.28 K 0.29 K 0.30 K 0.31 K 0.71 K
0.050 0.68 K 0.70 K 0.71 K 0.73 K 1.64 K
0.010 4.68 K 4.78 K 4.87 K 4.97 K 11.23 K
0.005 10.51 K 10.76 K 10.97 K 11.17 K 25.16 K
0.001 67.61 K 69.01 K 70.18 K 71.24 K 97.66 K

Table 2: Memory requirements for multiple
quantiles.

As expected, the amount of main memory required
grows slowly as a function of p, the number of distinct
quantiles requested. However, pre-computation of�
��1

�
equally spaced quantiles requires signi�cantly

more memory. This stems from the fact that memory
requirements grow at least as fast as ��1, and pre-
computation sets the approximation guarantee to �

2 .
Therefore we are better o� using the pre-computation
trick only if p is extremely large, or if p is not known at
the outset.

5 Dynamic Bu�er Allocation

One drawback of our algorithm is that we need
to allocate all the memory required up front (Figure



Unknown N Algorithm Known N Algorithm
�; � Number of Bu�ers b Size of Bu�er k Total memory bk Total memory

10�3 10�4 10�5 10�3 10�4 10�5 10�3 10�4 10�5 10�3 10�4 10�5

0.1000 3 3 3 90 97 102 0.26 K 0.28 K 0.30 K 0.13 K 0.14 K 0.15 K
0.0500 3 3 4 216 231 181 0.63 K 0.68 K 0.71 K 0.32 K 0.35 K 0.38 K
0.0100 4 5 5 1140 958 991 4.45 K 4.68 K 4.84 K 2.45 K 2.68 K 2.83 K
0.0050 5 5 5 2060 2153 2232 10.06 K 10.51 K 10.90 K 5.77 K 6.25 K 6.56 K
0.0010 6 6 6 11109 11539 11914 65.09 K 67.61 K 69.81 K 39.71 K 42.61 K 44.49 K

Table 1: Values for number of bu�ers b, size of each bu�er k and total memory required by the new
algorithm for di�erent values of � and �. Also listed are memory requirements by our old algorithm
that knows N a priori (N is assumed to be large enough to warrant sampling).

4). If the input consists of a singleton element, our
main memory usage is clearly outrageous. This can be
ameliorated by allocating the set of b bu�ers one by
one, as required. Still, for small values of N � bk, the
algorithm uses signi�cantly more memory than would
have been required had N been known in advance. Is it
possible to re-design the algorithm so that bu�ers are
allocated even more slowly so that our main memory
usage at all times is as close as possible to that required
by an algorithm that knows N?

In practice, memory allocation would consist of a
sequence of bu�er allocation operations across time.
For performance and simplicity, it is desirable that each
bu�er be contiguous and that its size remain unchanged.

We now design an algorithm whose memory require-
ments grow slowly with the size of the input. We start
o� by allocating one bu�er initially. When it is full,
we allocate another. When the second bu�er is also
full, we have a choice between invoking Collapse and
allocating a new bu�er. In general, this choice has to
be made when all bu�ers currently allocated are full.
For i 2 f1; bg, let Li denote the number of leaves in
the tree when the ith bu�er is allocated. For the �rst
two bu�ers, L1 = 0 and L2 = 1. We call the sequence
hL1; L2; : : : ; Lbi the bu�er allocation schedule for the al-
gorithm. When Ld New operations have been carried
out, we start sampling and we follow the original algo-
rithm. For simplicity, we assume that for all i, Li < Ld,
i.e., there is no bu�er allocation once sampling kicks in.

If the input sequence has more than Ldk elements,
the constraints in Eq 1 and Eq 2 would ensure that
the output is an �-approximate �-quantile. If the
input sequence terminates at some point before Ld
New operations have been invoked, we invokeOutput
operation as usual. However, we require a guarantee
that the output is indeed an �-approximate �-quantile
no matter what the current value of N is. Clearly,
not all bu�er allocation schedules can provide such a
guarantee. We call a bu�er allocation schedule valid if
it provides such a guarantee.

It turns out that several bu�er schedules are valid.
To choose the best among the myriad of valid schedules,
we need an objective function. If the objective is
to minimize the maximum amount of memory ever
required, our original algorithm which allocates all
bu�ers at the outset is the best. If the objective is that
the main memory requirements be as close as possible
to that if N were known, we need to quantify the
goodness of a valid bu�er allocation schedule. Once
such a quantitative measure is available, we can select
the optimal schedule.
Another approach to select a reasonably good bu�er

allocation schedule is to let the user specify an upper
limit on the main memory requirements for di�erent
values of N . There may or may not be a valid bu�er
schedule that meets these upper limits. By trial and
error, the user can discover a schedule that is both valid
and reasonably good.
We adopt the latter approach, letting the user specify

upper limits on main memory usage for di�erent values
of N . How do we compute a valid schedule that meets
these limits? We search for k and b by assigning
increasingly large values to k. Fixing k �xes b and
the bu�er allocation schedule. We can then use Eq
3 to limit h, the height to which the tree is allowed
to grow before we start sampling. This enables us to
compute both Ld and Ls. From Eq 1, we obtain an
upper bound for �. From Eq 2, we get a lower bound for
�. If the range between these bounds does not intersect
with the interval (0; 1), the current schedule is rejected
and we start all over again with a larger value of k.
Otherwise, all constraints have been satis�ed and the
current schedule is accepted.
Figure 5 shows a valid schedule whose main memory

requirements are always within the upper limits speci-
�ed by the user.

6 Parallel Implementation

In a parallel setting, we assume P processing nodes.
The input also consists of P separate input sequences,



0

1000

2000

3000

4000

5000

6000

7000

8000

0 2 4 6 8 10

M
em

or
y

log (N) to base 10

Valid schedule
Known N curve
User specified

Figure 5: A valid bu�er allocation schedule within
user speci�ed memory constraints, for � = 0:01
and � = 10�4.

one per processor. Any input sequence may terminate
at any time. We wish to compute approximate quantiles
of the aggregate of all sequences taken together. Inter-
processor communication should be minimal.

At each processor, we run the single processor
algorithm outlined in the previous section. A processor,
upon termination of its input sequence, is left with some
full bu�ers and possibly a partial bu�er. If there are
at least two full bu�ers, a �nal Collapse on the set
of full bu�ers is invoked. Each processor �nally has
at most one full bu�er and at most one partial bu�er.
Both bu�ers, tagged with their respective weights and
sizes, are then shipped for further processing to a
distinguished processor which we call Processor P0.

Processor P0 assigns level 0 to all incoming bu�ers. It
retains the weights of incoming full bu�ers. To handle
incoming partial bu�ers, it maintains an additional
bu�er B0. The �rst partial bu�er received is copied
to B0. When another partial bu�er Bin arrives, the
weights of Bin and B0 are compared. We denote the
weights by Win and W0 respectively. If they are equal,
we copy as many elements from Bin as possible without
over
owingB0. If B0 becomes full, it is added to the list
of full bu�ers maintained by Processor 0. If all bu�ers
are currently full and there still remain some uncopied
elements in Bin, Collapse is invoked. The remaining
elements of Bin are then copied to B0. If Win and W0

di�er, then the bu�er with smaller weight is shrunk in
size by sampling at a rate equal to the ratio of the larger
weight to the smaller. Moreover, the bu�er just shrunk
is assigned the larger weight. For example, if Bin has
weight Win = 8 and B0 has weight W0 = 2, then B0

is shrunk in size by sampling at rate Win=W0 = 4, i.e.,

exactly one out of successive blocks of four elements in
B0 is selected. After shrinking, B0 is assigned weight 8.
At this point both B0 and Bin have same weight and
we process them as described before.

When all input bu�ers have been received by P0, it
invokes an Output operation on all its bu�ers taken
together.

How much memory does P0 require? P0 is required
to maintain at least two bu�ers. It can build any tree
of bu�ers (See Figure 2). In the analysis that follows,
we assume that the height of such a tree is h0.

When the degree or parallelism is very large, collect-
ing output bu�ers at one node may deteriorate perfor-
mance signi�cantly. In such a case, we aggregate pro-
cessors into multiple groups. One designated processor
in each group collects the output bu�ers from all oth-
ers in its group. In the end, the outputs from these
processors can be collected at one processor. As far as
theoretical analysis of such a scheme is concerned, luck-
ily, all that matters is the increase in the height of the
tree, which we denote by h0.

6.1 Parallel Sampling Constraint

Assuming that sampling is carried out in at least one
processor, application of Lemma 1 to the set of samples
from all processors yields

� � 2 exp
�
�2(1� �)2�2X

�

where X = (
P

Ai)
2

P
Bi

for i = 1; 2; : : : ; P . There is a small

catch here2. Since all Ai andBi values are non-negative,
(
P

Ai)
2

P
Bi

�
P

A2

iP
Bi

� min
h
A2

i

Bi

i
i=1;2;::: ;P

. We showed that

A2

i

Bi
� min[Ldk;

8
3Lsk], for i = 1; 2; : : : ; P . This leads to

the following inequality:

min
�
Ldk;

8
3Lsk

�
� log 2��1

2(1��)2�2 (4)

Interestingly, the constraint is the same as before (Eq
1).

6.2 Parallel Tree Constraints

The analysis of the tree is slightly di�erent because
of the additional Collapse in the end at a designated
processor. Proceeding as before, we get an inequality

of the form
P

CiP
Di

� 2��k � 2. Since all Ci and

Di values are positive, from componendo-dividendo,
P

CiP
Di

� max
h
Ci

Di

i
i=1;2;::: ;P

. We already established

that for any i, Ci

Di
� h + h0 + 3 + c where c =

2Processors where sampling has not started will have their Ai

values less than Ld. We can club these values together with the
Ld of that Ai which corresponds to the processor where sampling
has begun. The rest of the analysis is then ok.



max
h
(��2)(H�2)
�+2H�2

i
H�1

and � = Ld
Ls
. It follows that

h+ h0 + 3+ c � 2��k (5)

Interestingly, the constraint is the same as before, only
the height h has now been augmented with h0, the
additional height gained at the merging processor.
If sampling does not start at any processor, then

following the same argument as in the non-parallel case,
we obtain the constraint

h+ h0 + 1 � 2�k (6)

6.3 Putting It All Together

Remarkably, the three constraints, namely Eqn 4, 5
and 6, are very similar to the tree constraints derived for
the single processor case. Computing b and k amounts
to optimizing bk subject to the three constraints.

7 Extreme Values

This section deals with an interesting special case of
the order statistic problem. The case arises when the
required quantile � is small and close to �, the required
accuracy. For instance, if the required quantile � is 1%,
or equivalently, :01 and the desired accuracy is 1 in 1000
or :001.
We provide a simple algorithm which seems to out-

perform most other algorithms handily in the amount
of memory required. As a motivating example, when �
and � are set to exactly the same value, the minimum
value in the dataset is an �-approximate �-quantile.
Clearly, this value can be calculated using very little
space. In this section we look at a simple generaliza-
tion of this observation.
The method is to use a random sample and keep

only the k largest elements of the sample in memory.
The parameters k and the sample size s are chosen in
conjunction so that the expected rank of the kth largest
element of the sample is �N and so that the probability
that it is an �-approximate �-quantile is at least �. As
k is increased, the sample size s has to be increased
in correspondence. In particular, the relationship is
k = �s. Thus, the sampling rate, which is s

N
= k

N�

is dependent on N , the size of the data set.
The question is the following: Given �; � and �, what

is the smallest value of k (and consequently of s) such

that the kthlargest value in s is an � approximate
� quantile with probability 1 � �? Computing a
tight bound for k and s requires a tighter bound on
the probability of tail events than that provided by
Hoe�ding's lemma. We elaborate on this next.
There are a number of bounds on the probability

of tail events, alternately known as \large deviation
theorems." We will state a form that is convenient in
our context, usually known as Stein's lemma.

Let fXi : 1 � i � Ng be i.i.d. f0; 1g Bernoulli
with parameter q which is unknown. The simple
likelihood test between two competing hypothesis p1
and p2 aims on �guring out which of p1 and p2 is
closer to q. The test is simply to choose the pj
maximizing P (fXig were generated by pj), which is,
letting

P
iXi = `,

�
n
`

�
p`j(1�pj)

N�`. Let p1 be the truly

better hypothesis3 with respect to q. We say that the
test fails if it chooses the wrong hypothesis, in this case,
p2. Stein's lemma places a bound on the probability
that this test fails.

Lemma 6 (Stein's Lemma) Let fXi : 1 � i � sg be
i.i.d. Bernoulli with parameter q. Consider any p1; p2,
pi 2 [0; 1]. Then, the probability that the likelihood test
fails is bounded by

P (likelihood test fails) � 2�sD(p1;p2)

where D(p1; p2) denotes the Kullback Leibler distance,
p1 log

p2
p1

+ (1� p1) log
1�p2
1�p1

. 2

Let us assume that we choose a random sample with
replacement, (this is not much di�erent from a sample
without replacement if the sample size is small with
respect to N). Let Xi be the Bernoulli variable that is
1 i� the ith sample point has rank at most �N . Clearly,
the probability that Xi is 1 is exactly �.
By choosing p1 = q = �, p2 = �� �, applying Stein's

lemma and summing the two probabilities, we get a
bound on the probability that the kth largest element is
either too small or too large in terms of the sample size
s (since, clearly, if the computed approximate quantile
is not an �-approximate �-quantile, the likelihood test
fails and the sum is the union bound on the two bad
events).
Thus, modulo our approximation, we obtain the

condition:

� � 2�D(�;���)s + 2�D(�;�+�)s

Also, note that since the expected rank of the kth
largest element of the sample is �N , we get

k=s = �

The two conditions above give us enough information
to compute a bound for k in terms of �, � and �.
When subject to the conditions that � is small, and
� is smaller, the above expression reduces to

�

2
� 2��s

3We do not specify exactly what we mean by this, though for
our purposes, we note that in the case that q = p1, then p1 is
the truly better hypothesis. The principle notion here is that the
better hypothesis is the closer one with respect to the Kullback
Leibler distance (sometimes known as the relative entropy). For
details check [CT91]



Consequently, choosing s = 1
�
(log 1

�
+ 1) su�ces. And

thus, k, the amount of memory required is k = �
�
(1 +

log 1
�
).

The advantage of this method is that the amount of
space required is linear in 1

�
and not quadratic, as is

the case with the random sampling algorithm when �
is larger.

8 Conclusions

Important database applications that employ quan-
tiles su�er from lack of reliable a priori knowledge of
the length of input sequence whose quantiles need be
computed. This motivates a search for quantile �nding
algorithms that do not require such knowledge.
We presented the �rst practical algorithm enjoying

this property. The algorithm is part of the framework
�rst proposed in [MRL98]. Moreover, it employs a
novel non-uniform random sampling technique. Its
performance in terms of main memory requirements
is comparable to that of the best known algorithm
that knows N . Furthermore, we improved upon the
algorithm by delaying the allocation of bu�ers so that
the main memory requirements during the course of
execution are as close as possible to that of the best
algorithm that knows N . We also proposed and
analyzed a parallel version of the algorithm.
We also presented algorithms that require signi�-

cantly less memory if the desired quantiles is an extreme
value, i.e., close to the largest or smallest element in the
sequence.

Acknowledgments

We thank Peter Haas for pointing out Lemma 1, a
version of Hoe�ding's inequality that uses the sum of
squares in the denominator of the exponent.

References

[ARS97] K. Alsabti, S. Ranka, and V. Singh. A One-Pass
Algorithm for Accurately Estimating Quantiles
for Disk-Resident Data. In Proc. 23rd VLDB
Conference, Athens, Greece, 1997.

[AS95] R. Agrawal and A. Swami. A One-Pass Space-
E�cient Algorithm for Finding Quantiles. In
Proc. 7th Intl. Conf. Management of Data
(COMAD-95), Pune, India, 1995.

[BFP+73] M. Blum, R. W. Floyd, V. R. Pratt, R. L. Rivest,
and R. E. Tarjan. Time Bounds for Selection. In
J. Comput. Syst. Sci., volume 7, pages 448{461,
1973.

[CMN98] S Chaudhuri, R Motwani, and V Narasayya.
Random Sampling for Histogram Construction:
How much is enough? In ACM SIGMOD 98,
volume 28, pages 436{447, Seattle, WA, USA,
June 1998.

[CT91] T. M. Cover and J. A. Thomas. Elements of
Information Theory. Wiley, New York, 1991.

[DB2] DB2 MVS. .

[DNS91] D. DeWitt, J. Naughton, and D. Schneider. Par-
allel Sorting on a Shared-Nothing Architecture
using Probabilistic Splitting. In Proc. Intl. Conf.
on Parallel and Distributed Inf. Sys., pages 280{
291, Miami Beach, 1991.

[GM98] P G Gibbons and Y Matias. New Sampling-
based Summary Statistics for Improving Approx-
imate Query Answers. In ACM SIGMOD 98, vol-
ume 28, pages 331{342, Seattle, WA, USA, June
1998.

[GM99] P. B. Gibbons and Y. Matias. Synoptic Data
Structures for Massive Data Sets. In To appear
in DIMACS Series in Discrete Math. and Thy.
Comp. Sc., 1999.

[GMP97] P G Gibbons, Y Matias, and V Poosala. Fast
Incremental Maintenance of Approximate His-
tograms. In Proc. 23rd Intl. Conf. on Very Large
Data Bases, pages 466{475, August 1997.

[Hel97] J. M. Hellerstein. Online Processing Redux.
Bulletin of the IEEE Computer Society, 1997.

[Hoe63] W. Hoe�ding. Probability Inequalities for Sums
of Bounded Random Variables. American Sta-
tistical Association Jornal, pages 13{30, March
1963.

[Inf] Informix. .

[MP80] J. I. Munro and M. S. Paterson. Selection
and Sorting with Limited Storage. Theoretical
Computer Science, 12:315{323, 1980.

[MRL98] G. S. Manku, S. Rajagopalan, and B. G. Lindsay.
Approximate Medians and other Quantiles in
One Pass and with Limited Memory. In ACM
SIGMOD 98, volume 28, pages 426{435, Seattle,
WA, USA, June 1998.

[Pat97] M. R. Paterson. Progress in Selection. Deptt.
of Computer Science, University of Warwick,
Coventry, UK, 1997.

[PIHS96] V. Poosala, Y. E. Ioannidis, P. J. Haas, and E. J.
Shekita. Improved Histograms for Selectivity Es-
timation of Range Predicates. In ACM SIGMOD
96, pages 294{305, Montreal, June 1996.

[Poh69] I. Pohl. A Minimum Storage Algorithm for
Computing the Median. Technical Report IBM
Research Report RC 2701 (# 12713), IBM T J
Watson Center, November 1969.

[SALP79] P. G. Selinger, M. M. Astrahan, R. A. Lories,
and T. G. Price. Access Path Selection in a
Relational Database Management System. In
ACM SIGMOD 79, June 1979.

[Vit85] J S Vitter. Random Sampling with a Reservoir.
ACM Tran. Math. Software, 11(1):37{57, 1985.

[Yao74] F. F. Yao. On Lower Bounds for Selection
Problems. Technical Report MAC TR-121,
Massachusetts Institute of Technology, 1974.


